Nuclear translocation of fibroblast growth factor-2 (FGF2) is regulated by Karyopherin-β2 and Ran GTPase in human glioblastoma cells

نویسندگان

  • Feng Wang
  • Lijun Yang
  • Lin Shi
  • Qian Li
  • Gengshen Zhang
  • Jianliang Wu
  • Jun Zheng
  • Baohua Jiao
چکیده

Human glioblastoma multiforme (GBM) is the most malignant tumor of the central nervous system (CNS). Fibroblast growth factor-2 (FGF2) belongs to the FGF superfamily and functions as a potential oncoprotein in GBM. FGF2 has low molecular weight (18K) and high molecular weight (HMW) isoforms. Nuclear accumulation of HMW-FGF2 strongly promotes glioblastoma cell proliferation, yet mechanism governing such cellular distribution remains unexplored. We investigated the mechanisms regulating FGF2 cellular localization in T98G human brain glioblastoma cells. We found HMW-FGF2, but not 18K-FGF2, is primarily located in the nucleus and interacts with nuclear transport protein Karyopherin-β2/Transportin (Kapβ2). SiRNA-directed Kapβ2 knockdown significantly reduced HMW-FGF2's nuclear translocation. Moreover, inhibiting Ran GTPase activity also resulted in decreased HMW-FGF2 nuclear accumulation. Proliferation of T98G cells is greatly enhanced with transfections HMW-FGF2. Decreased PTEN expression and activated Akt signaling were observed upon HMW-FGF2 overexpression and might mediate pro-survival effect of FGF2. Interestingly, addition of nuclear localization signal (NLS) to 18K-FGF2 forced its nuclear import and dramatically increased cell proliferation and Akt activation. These findings demonstrated for the first time the molecular mechanisms for FGF2's nuclear import, which promotes GBM cell proliferation and survival, providing novel insights to the development of GBM treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion

Pancreatic cancer is characterised by desmoplasia, driven by activated pancreatic stellate cells (PSCs). Over-expression of FGFs and their receptors is a feature of pancreatic cancer and correlates with poor prognosis, but whether their expression impacts on PSCs is unclear. At the invasive front of human pancreatic cancer, FGF2 and FGFR1 localise to the nucleus in activated PSCs but not cancer...

متن کامل

Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components

FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P2-induced membrane insertion of FGF2 oligome...

متن کامل

TRANSFORMING GROWTH FACTOR β2 UP-REGULATES GM-CSF GENE IN HUMAN BLADDER CARCINOMA CELL LINE HTB 5637

Transforming growth factor betas are multifunctional polypeptides in the cytokine superfamily. They have a growth inhibitory role on hemopoietic progenitor cells in semisolid colony assay as well as in long-term bone-marrow culture. TGF - β2 represses stromal cells, stem cell factor gene transcription, and decreases the stability of c-kit transcripts in hemopoietic cells. TGF-β also modulat...

متن کامل

Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin

BACKGROUND Control of the nuclear localization of specific proteins is an important mechanism for regulating many signal transduction pathways. Upon activation of the Wnt signaling pathway, beta-catenin localizes into the nucleus and interacts with TCF/LEF-1 (T-cell factor/lymphocyte enhancer factor-1) transcription factors, triggering activation of downstream genes. The role of regulated nucle...

متن کامل

FGF2 induces RANKL gene expression as well as IL1β regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells.

OBJECTIVE Human bone marrow mesenchymal stromal cells (hBM-MSC) are being applied in tissue regeneration and treatment of autoimmune diseases (AD). Their cellular and immunophenotype depend on isolation and culture conditions which may influence their therapeutic application and reflect their in vivo biological functions. We have further characterised the phenotype induced by fibroblast growth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015